Cancer theranostics is a relatively new term that encompasses both diagnosis and treatment. The hindrances of conventional diagnostic and therapeutic agents are plenty, compromising not only the therapeutic process but even the life of the patient. Therefore, the need for more evolved, cancer-specific and effective theranostic tools is imperative. The development of an effective diagnostic but at the same time therapeutic nanosystem would be a major breakthrough in cancer theragnosis.
The aim of this project is to develop a novel theranostic agent with improved properties that will actively target tumor sites. In particular, the proposed radiolabeled functionalized nanocrystal clusters (Co-CNCs) of magnetic nanoparticles (MNPs) will be capable of dual-modality Positron Emission Tomography (PET)/ Magnetic Resonance Imaging (MRI) attributed to the presence of the radioisotope Gallium-68 (68Ga) and the MNPs, respectively. Furthermore, the presence of a chemotherapeutic agent is anticipated to induce a strong antineoplasmatic effect while the addition of a pharmacophore enables us to achieve targeted delivery and improved selectivity of the nanostructure. A triple therapeutic effect will be achieved, after targeted delivery of the functionalized MNPs, attributed to the simultaneous presence of the chemotherapeutic agent, the therapeutic radioisotope Lutetium-177 (177Lu) and the application of magnetic hyperthermia (MH)