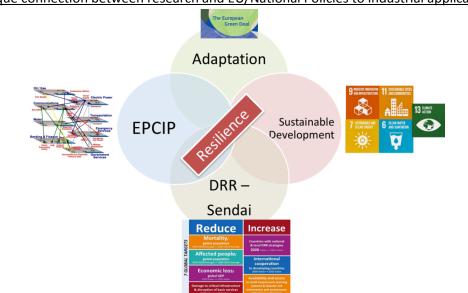
Climate Resilient Infrastructures: from disaster management to sustainable adaptation

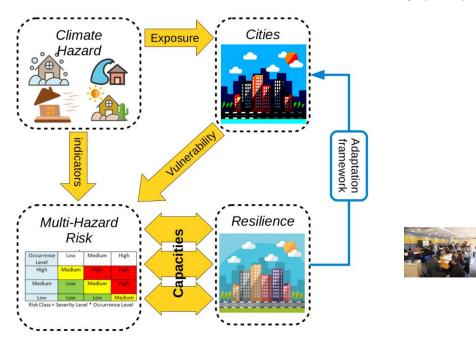
Athanasios Sfetsos

Environmental Research Laboratory Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety National Centre for Scientific Research "Demokritos" 15310 Agia Paraskevi, Greece Tel. +30-210-6503403 Email: <u>ts@ipta.demokritos.gr</u>



ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ «ΔΗΜΟΚΡΙΤΟΣ»

Contents

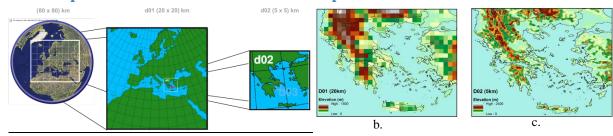

Cli	nate Resilient Infrastructures:
fro	m disaster management to sustainable adaptation1
1.	Overall concept
2.	Climate projections4
i	2.1 Climate predictions over Greece at 5km spatial resolution4
i	2.2 Seasonal Forecasting5
	2.3 Determination of Hazard Evolution due to Climate Change
3.	Extremes & Compound Event Analysis11
4.	Hazard Simulation
4	1.1 Wildfires
4	1.2 Smoke Dispersion
4	1.3 Dirty Bombs in City Centers
4	1.4 Dispersion from Nuclear Accidents
5.	Impact Assessment
6.	Climate Risk Assessment
(5.1 National Risk Assessments
(5.2 Critical Infrastructure Climate Risk
7.	Climate Resilience
8.	Climate Adaptation through Nature Based Solutions19
9.	Exercises
ļ	9.1Table Top – Cyprus
Ģ	9.2 Command Post France 21
Ģ	9.3 Community Based Exercises

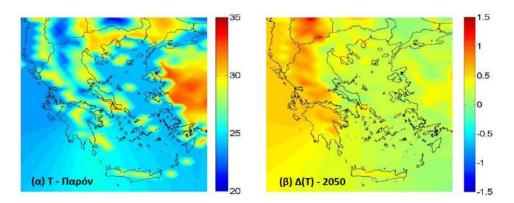
1. Overall concept

Unique connection between research and EU/National Policies to industrial applications

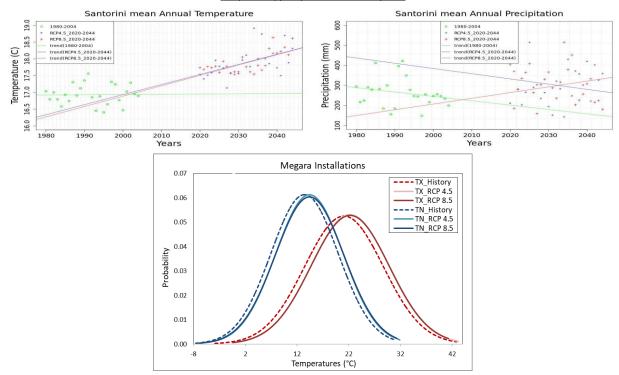
From Climate Risk to Climate Resilience through participatory process

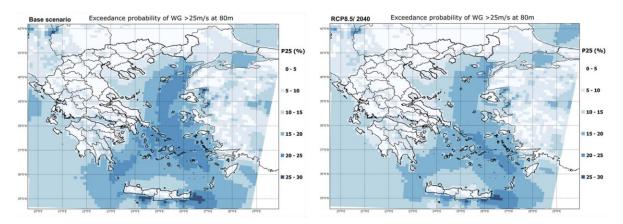
Engagement of stakeholders Co – creation in case studies



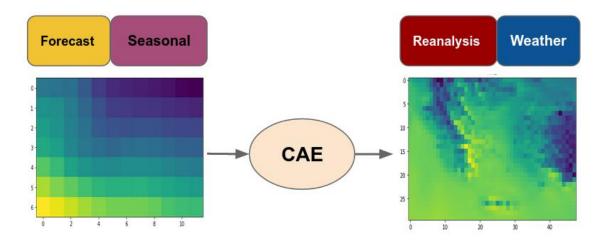


2. Climate projections

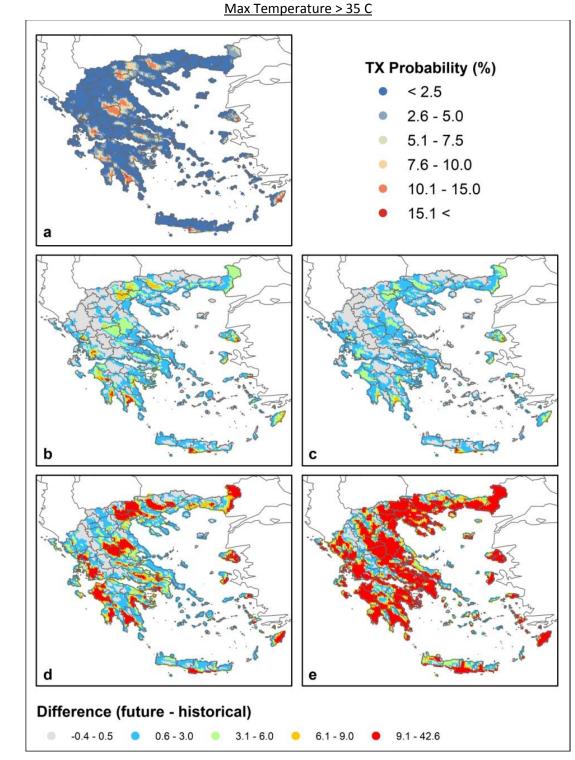

2.1 Climate predictions over Greece at 5km spatial resolution


Αλλαγή στη Μέση Θερμοκρασία

Παράδειγμα για την Σαντορίνη

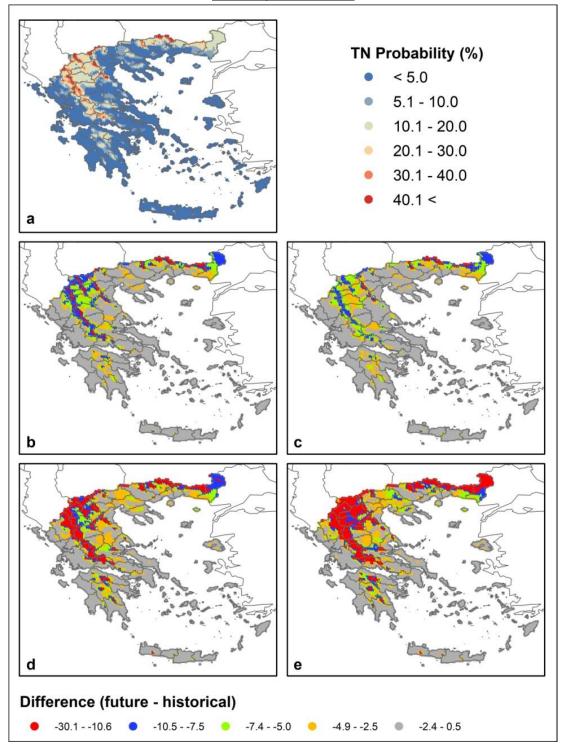


2.2 Seasonal Forecasting

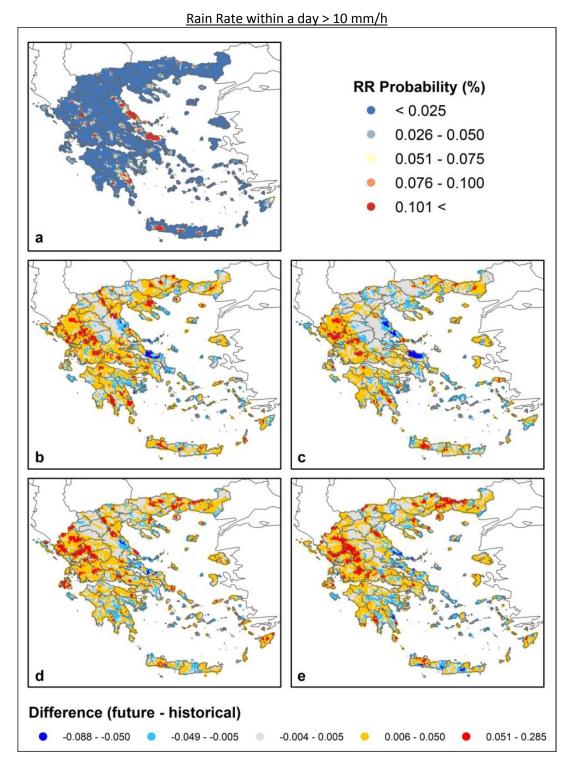


6 months ahead forecast at 5km over Greece

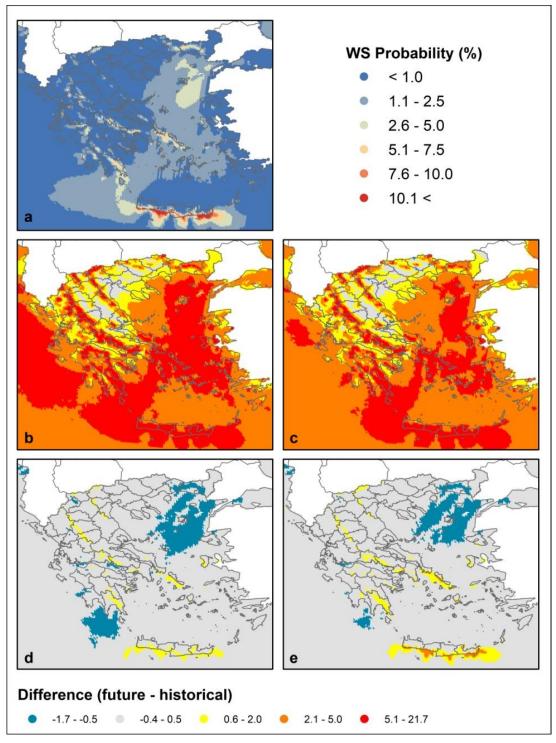
Πιθανότητα εμφάνιση ριπών αέρα (ταχύτητα αέρα > 25 m/s στα 80m)

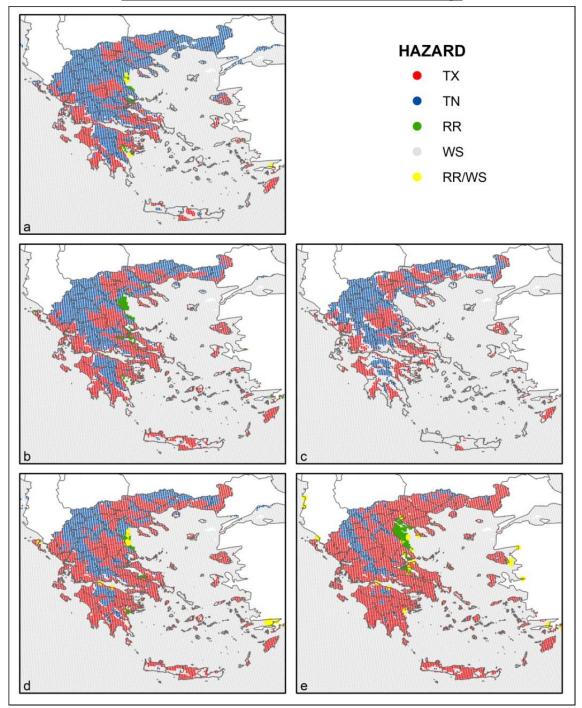


Artificial Intelligence for improving Seasonal predictions

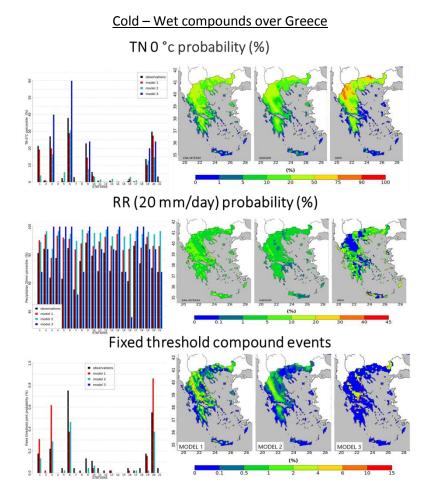


2.3 Determination of Hazard Evolution due to Climate Change

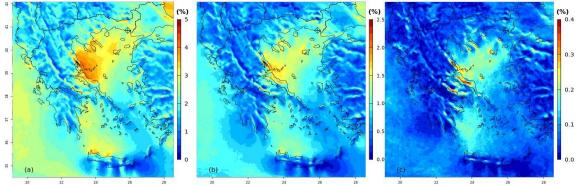

a) Spatial distribution of probability of TX exceedance above 35°C calculated using EC-EARTH_WRF downscaled data for the historical summer period 1980-2004. Differences (future – historical) in the probability of TX exceedance for: b) RCP4.5 in near future (2025-2049), c) RCP8.5 in near future (2025-2049), d) RCP4.5 in far future (2075-2099) and e) RCP8.5 in far future (2075-2099).


a) Spatial distribution of probability of TN exceedance below -5°C calculated using EC-EARTH_WRF downscaled data for the historical winter period 1980-2004. Differences (future – historical) in the probability of TN exceedance for: b) RCP4.5 in near future (2025-2049), c) RCP8.5 in near future (2025-2049), d) RCP4.5 in far future (2075-2099) and e) RCP8.5 in far future (2075-2099).

a) Spatial distribution of probability of RR exceedance above 10 mm/h calculated using EC-EARTH_WRF downscaled data for the historical period 1980-2004. Differences (future – historical) in the probability of RR exceedance for: b) RCP4.5 in near future (2025-2049), c) RCP8.5 in near future (2025-2049), d) RCP4.5 in far future (2075-2099) and e) RCP8.5 in far future (2075-2099).


a) Spatial distribution of probability of wind speed exceedance over the threshold (15 m/s) calculated using EC-EARTH_WRF downscaled data for the historical period 1980-2004. Differences (future – historical) in the probability of wind speed exceedance for: b) RCP4.5 in near future (2025-2049), c) RCP8.5 in near future (2025-2049), d) RCP4.5 in far future (2075-2099) and e) RCP8.5 in far future (2075-2099).

Maximum Hazard and its evolution under climate change


Multi-hazard maps using EC-EARTH_WRF downscaled data for: a) the historical period 1980-2004, b) RCP4.5 in near future (2025-2049), c) RCP8.5 in near future (2025-2049), d) RCP4.5 in far future (2075-2099) and e) RCP8.5 in far future (2075-2099).

3. Extremes & Compound Event Analysis

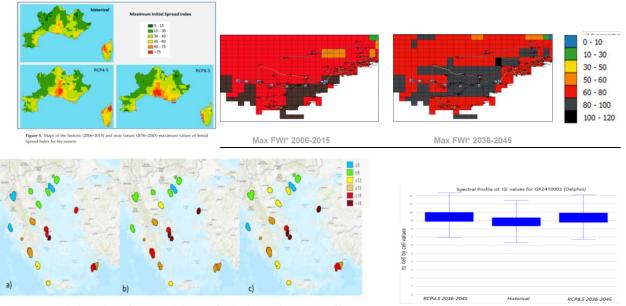
Rain – Wind compounds over Greece

Percentage of times exceeding both percentile thresholds for 6hour Precipitation and 10m Wind Speed

4. Hazard Simulation

4.1 Wildfires

Analysis of future evolution of fire weather patterns and fire spreading simulation models



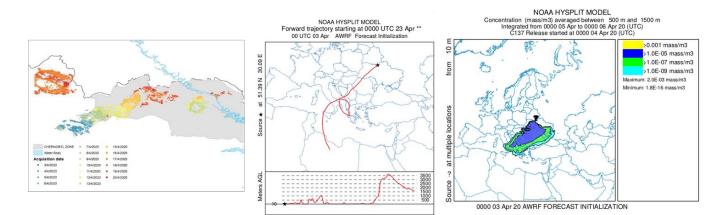
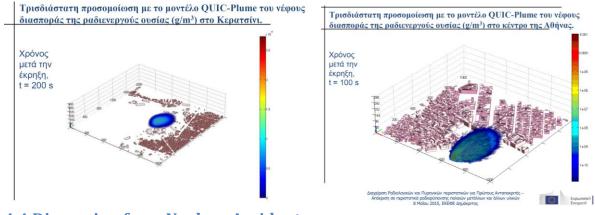
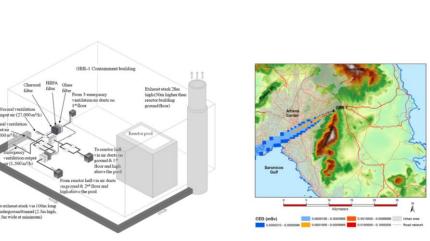
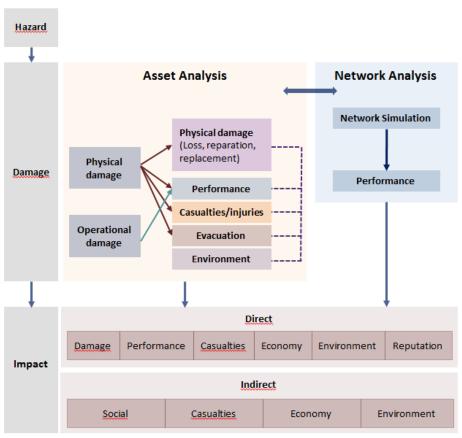

Figure 7. Maps of coloured Areas of Interest (AoI) depicting classified Seasonal Severity Rating (SSR) Mean values, for: (a) the historic period, (b) RCP 4.5 2036–2045, (c) RCP 8.5 2036–2045.

Figure 10. Spectral Profile of Initial Spread Index (ISI) values for GR2410002 (Delphoi), for RCP 4.5 2036-2045 (left), historic period (centre), and RCP 8.5 2036-2045 (right).


Fire Spreading Models – Examples at NCSRD


4.2 Smoke Dispersion

4.3 Dirty Bombs in City Centers



4.4 Dispersion from Nuclear Accidents

5. Impact Assessment

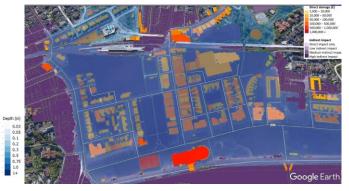
- ✓ Changing nature of hazards (faster, more frequent, extended, higher magnitude)
- ✓ Change of design thresholds (EUROCODES, return periods)
- ✓ Faster degradation (due to multiple factors)-> requirements for predictive maintenance
- ✓ Change in supply and demand profiles
- ✓ Increased vulnerability to
 - o Structural damages due to extreme events
 - Human capital (e.g. heatwaves)
 - Operational / response element
- ✓ Change of damage profiling (time dynamic damage) and restoration properties

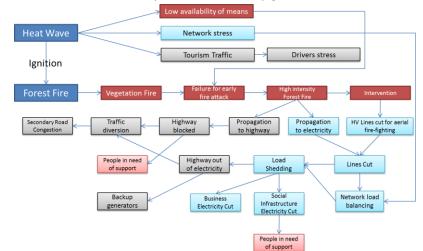
Muti-scale impact assessment model

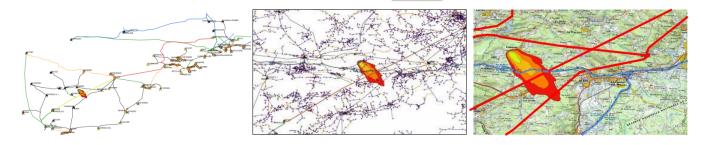
Figure 4: Workflow of EU-CIRCLE holistic impact analysis

Flooding impact on interconnected infrastructures

Critical Infrastructure	Effects of flooding			
Electricity	Service disruption, Infrastructure damage	Flooded		_
Gas	Service disruption, Infrastructure damage	Buildings		-
Telecommunications	Service disruption, Infrastructure damage	& Road	Electrical Sub Station	Critical
Sea Defence	Overtopping, Infrastructure damage			Infrastructure
Water	Service disruption, Infrastructure damage			
Sewer	Service disruption, Infrastructure damage			
Highways	Road network disruption, Road damage, diversions, Pressure on other routes, manpower issues			Network Area
Rail	Rail network disruption, damage, diversions, pressure on other routes, manpower issues		Sewer	vetwork Area
Emergency Services		+		
Fire Service	Ability to attend flooding incidents and other emergency incidents			
Police	Ability to attend flooding incidents and other emergency incidents			
Ambulance	Ability to attend flooding incidents and other emergency incidents			
Local Community			Pumpi	ngStation
Residents	Safety, damage to property/possessions, evacuation		Exchange	igotation
Tourism	Depends on time of year, events, safety, evacuation	Telecom Network Area		+
Businesses	Damage, disruption, evacuation	•		
Hospital/Care homes	Service disruption, Infrastructure damage, evacuation	$\rightarrow \rightarrow -$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	
Schools	Service disruption, Infrastructure damage, evacuation	Road Diversion	L	
Environment	Damage, pollution	noud priversion	Electrical Network Area	

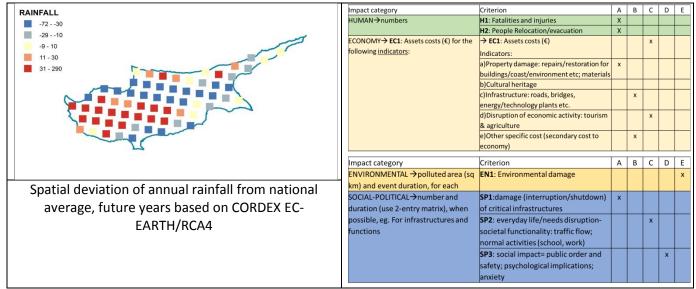

Present Day

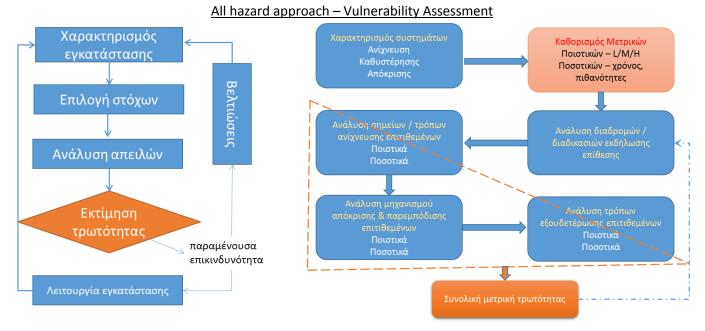

٠


50 Years Climate Change

Example in South France

• Impacts on interconnected transport and electricity grids from wildfires under climate change




6. Climate Risk Assessment

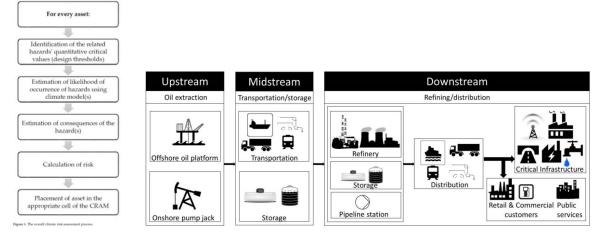
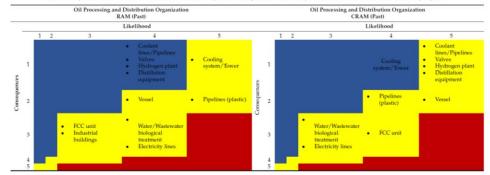
6.1 National Risk Assessments

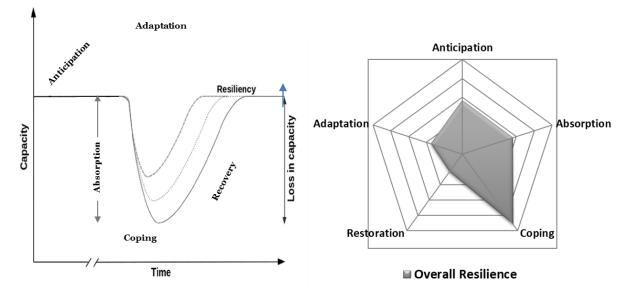
Water Scarcity in Cyprus

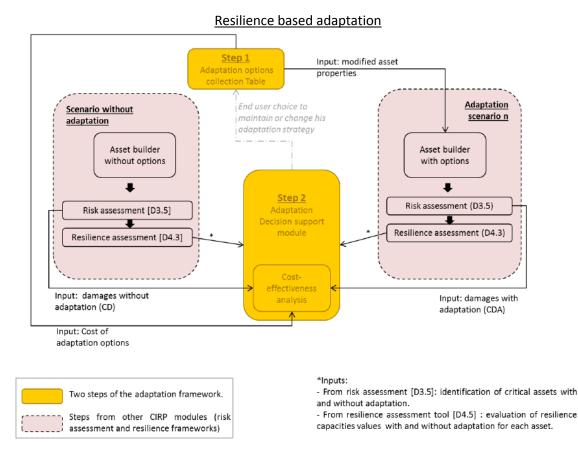
CI Risk and Vulnerability Assessment Reference plans

6.2 Critical Infrastructure Climate Risk

Hellenic Petroleum


Table 7. Comparison of the risk levels (low risk (blue), medium risk (yellow), and high risk (red)) of the exposed assets between RAM and CRAM for the past period.


Cyprus Energy Hub

		CI operator	asset	hazard	Value (unit)	LIKE Class	IMP Class	Risk Class
	KINK M		storage	Max T				VERY
		VTTV	tanks	(RCP 8.5)	41	HIGH	NEGLIGIBLE	LOW
	NOT /	1	storage	Max T				VERY
		VTTV	tanks	(RCP 8.5)	45	MEDIUM	NEGLIGIBLE	LOW
			storage	Max T				VERY
		VTTV	tanks	(RCP 8.5)	48	LOW	NEGLIGIBLE	LOW
			storage	wind (RCP				
		VVTV	tanks	4.5)	36m/s	MEDIUM	MEDIUM	MEDIUM
			storage	wind (RCP				
		VTTV	tanks	8.5)	36 m/s	MEDIUM	MEDIUM	MEDIUM

7. Climate Resilience

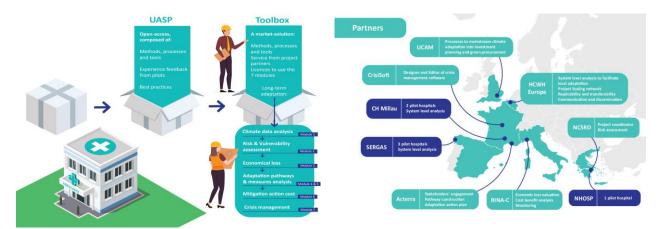
Conceptual resilience curve, adapted for EU-CIRCLE project (left); Overall Resilience Index from Resilience Assessment Tool (right)

8. Climate Adaptation through Nature Based Solutions

LIFE RESYSTAL - Climate change REsilience framework for health SYStems and hospiTALs

Project Timeline: September 2021 - August 2025

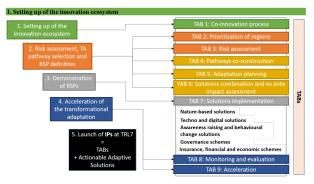
The current COVID-19 crisis throws into sharp focus the importance of resilient societies and of their health sectors. We must complement our efforts to reduce the effects of climate change with those which enable us to adapt to it. Climate change strikes at the very core of health systems whose mission is to keep people healthy. They are also affected financially and structurally by the rising frequency of extreme weather events. Even distant climate events can impact them. For health systems, climate change directly impacts the health of patients and communities. We are only as healthy as the environment in which we live, and as climate change worsens, more and more people face the health consequences of wildfires, hurricanes, floods, and forced migration globally from failed crops, droughts, and resulting political unrest.


The Objectives

The LIFE RESYSTAL project's main objective is to increase climate adaptation capacities and resilience of the European Health Infrastructure (EHI) and systems and related dependant critical infrastructures.

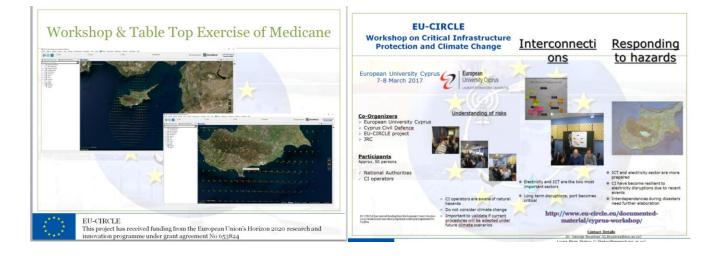
To achieve this, the project will

- 1. set the basis of a European Network for the climate adaptation of the European health sector;
- 2. provide science based support for implementing Climate Change Adaptation measures applicable to any EHI;
- 3. demonstrate EHI adaptation in diverse climate conditions; and
- 4. facilitate and promote EHI resilience.


This 4-year project will develop, demonstrate, evaluate and disseminate a **framework for climate-resilient health systems** with seven pilot hospitals (site-level) and two pilot regional health systems (system-level).

TransfomAr - Accelerating and upscaling transformational adaptation in Europe: demonstration of water-related innovation packages Project Timeline: October 2021 - September 2025

TransformAr aims to develop and demonstrate solutions and pathways to achieve rapid and far-reaching transformational adaptation (TA) across the EU. Cross-sectoral and multi-scale innovation packages, as the combination of solutions and pathways, will support regions and communities in their societal transformation towards climate change resilience. Region-specific portfolios (RSPs) including Nature-Based Solutions, innovative technologies, financing, insurance and governance models, awareness and behavioural change are o-developed and demonstrated. Transformational adaptation will be triggered by a co-innovation process that will co-create transformational adaptation pathways for six demonstrator regions and communities in Europe. The pathway cocreation process is supported by user-friendly, accessible, and comprehensive multi-sector dynamics data services. The data services fit to the needs of public and private investors, including citizens in TA. To accelerate investment in climate change adaptation (CCA), and to enable that plans are brought into practice, TransformAr also demonstrates the potential of business models and alternative finance mechanisms for transformation adaptation. A European Community of Practice will furthermore be organised and institutionalised to facilitate the exchange of knowledge and other resources that may help to overcome barriers, implement, and accelerate opportunities. Common processes to reach TA are gathered 9 in Transformational Adaptive Blocks (TABs).



Overall concept

TransformAr will develop an adaptive process based on open innovation, user-friendly and accessible climate data services, actionable solutions and large-scale experimentation. It will be supported by the implementation of IPs built to increase communities' social and climate resilience. These IPs seek to reverse and/or adapt to the increasing anthropogenic pressures on the landscape that are exacerbated by climate change (CC) extremes such as increasing drought, flood or pollution. The replicability and sustainability of IPs will be ensured through genuine community engagement and adoption, use of stakeholder knowledge and bottom-up approaches. Clearly demonstrating both public and private benefits as a way of securing future investment will add to that. The COVID-19 impacts on society, public health and the economy are fully integrated into all stages of the project, from socio-economic modelling and risk assessment to local community engagement, business models and innovative financing schemes. A particular focus will be placed on assessing the potential for TA as part of the Recovery and Resilience plan in EU countries and mainstreaming transformational adaptation investment in the context of the EU Green Deal.

9. Exercises

9.1Table Top – Cyprus

9.2 Command Post France

1st command post exercise that considered a scenario under climate change

2006-2015 Time is a key factor in managing the impacts of a forest fire on the electricity and highway networks

9.3 Community Based Exercises

- ✓ Main Goal : Enhancement of public's preparedness / resilience (at individual, household, and community level).
- ✓ The exercise participants are (predominantly) citizens (members of the local community), local administration personnel and local stakeholders (who are not part of the Civil Protection system proper).
- ✓ a tool to promote integration of efforts of all stakeholders, applicable to all phases of DRR

